Abstract

Mucins (MUC) are highly glycosylated molecules widely expressed on epithelia of different origins, including colonic mucosa. Altered glycosylation processes in tumour cells result in the exposure of normally cryptic peptide epitopes, which may then be recognized as tumour-specific antigens. Recently, MUC1-specific antibodies were detected in the serum of a broad range of cancer patients, and from different tumours tumour-specific cytotoxic T lymphocytes (CTL) were isolated that recognized MUC1. Absence of HLA restriction in the recognition has been ascribed to the highly repetitive sequence of the polypeptide core, allowing simultaneous recognition of multiple identical epitopes and cross-linking and aggregation of T cell receptor on mucin-specific T cells. We investigated the expression of MUC1 epitopes in 56 cell suspensions from Dukes' B to D colorectal carcinomas using antibodies that recognize distinct peptide sequences on the glycosylated or deglycosylated MUC1 protein backbone. No relation was observed between MUC1 expression, or the extent of its glycosylation, and Dukes' stage, tumour location and tumour differentiation, but a positive correlation was detected between the percentages of tumour cells expressing mucin-1 and the numbers of CD3+ infiltrating cells. These tumour-infiltrating lymphocytes contained, however, only a few MUC1-specific T lymphocytes, as CTL showing preferential killing of MUC1-expressing target cells were only obtained from one tumour. Since, in addition, the majority of colorectal carcinomas were found to express the fully glycosylated MUC1 glycoprotein, its potential role as a target antigen for T-lymphocyte-mediated immunotherapy in this tumour type is probably limited.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call