Abstract
A bacterial strain, 17JY9-4T, was isolated from a soil sample collected on Jeju Island, South Korea. Colonies grown on R2A agar are pale pink in color, and cells are Gram-stain negative, short, and rod-shaped. Analysis of 16S rRNA gene sequences identified this strain as a member of the genus Mucilaginibacter in the family Sphingobacteriaceae, with high levels of 16S rRNA sequence similarity shared with Mucilaginibacter lutimaris BR-3T (98.0%), Mucilaginibacter rigui WPCB133T (98.0%), Mucilaginibacter phyllosphaerae PP-F2F-G21T (97.0%), Mucilaginibacter amnicola TAPP7T (96.8%), and Mucilaginibacter soli R9-65T (96.7%). Growth of strain 17JY9-4T occurs at 10-30°C, pH 6-8, and in the presence of 0-1.0% NaCl. The genomic G+C content is 44.38mol%. The predominant respiratory quinone of the isolate is MK-7; the major fatty acids are summed feature 3 (C16:1ω7c/C16:1ω6c) (39.7%), iso-C15:0 (22.8%), iso-C17:0 3-OH (7.8%), and C16:0 (7.7%); and the major polar lipid is phosphatidylethanolamine. The phenotypic and chemotaxonomic data support the placement of strain 17JY9-4T within the genus Mucilaginibacter. However, the DNA-DNA relatedness between the isolate and M. rigui, M. lutimaris, M. phyllosphaerae, M. amnicola, and M. soli were 44.3 ± 3.0%, 38.6 ± 3.7%, 23.2 ± 2.9%, 21.9 ± 3.1%, and 18.6 ± 3.7%, respectively. The results of 16S rRNA gene sequence similarity analysis, DNA-DNA hybridization analysis, and the observed differentiating phenotypic properties from other closely related taxa clearly indicate that strain 17JY9-4T represents a novel species in the genus Mucilaginibacter, for which the name Mucilaginibacter terrigena sp. nov. is proposed. The type strain is 17JY9-4T (= KCTC 62294T = JCM 33049T).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.