Abstract

The combined use of nanohydrogels (NHGs) and quantum dots (QDs) has resulted in the development of a nanoscaled drug delivery system (DDS) with fluorescence imaging potential. NHG-QDs composite loaded with anti-cancer drugs could be applied as an effective theranostics for simultaneous diagnosis and therapy of cancer cells. Here, we report on the synthesis of NHG-QDs nanosystem (NS) conjugated with an amino-modified MUC-1 aptamer (Ap) and loaded with hydrophobic paclitaxel (PTX). To effectively target and eradicate breast cancer MCF-7 cells, the nanocomposite was further loaded with the inhibitor of lactate dehydrogenase (LDH), sodium oxamate (SO) (Ap-NHG-QDs-PTX-SO) to inhibit the conversion of pyruvate to lactate via LDH and disrupting glycolysis. Results obtained from in vitro analysis (MTT assay, apoptosis/necrosis assessment, evaluation of mitochondria targeting, and gene expression profiling) revealed that Ap-NHG-QDs-PTX-SO NS could significantly target and inhibit MCF-7 cells and also induce mitochondria-mediated apoptosis. Collectively, the Ap-NHG-QDs-PTX-SO NS is proposed to serve as a robust theranostics for simultaneous imaging and therapy of breast cancer and other types of solid tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call