Abstract
Central to the Mu transpositional recombination are the two chemical steps; donor DNA cleavage and strand transfer. These reactions occur within the Mu transpososome that contains two Mu DNA end segments bound to a tetramer of MuA, the transposase. To investigate which MuA monomer catalyzes which chemical reaction, we made transpososomes containing wild-type and active site mutant MuA. By preloading the MuA variants onto Mu end DNA fragments of different length prior to transpososome assembly, we could track the catalysis by MuA bound to each Mu end segment. The donor DNA end that underwent the chemical reaction was identified. Both the donor DNA cleavage and strand transfer were catalyzed in trans by the MuA monomers bound to the partner Mu end. This arrangement explains why the transpososome assembly is a prerequisite for the chemical steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.