Abstract

The Robertson's Mutator stock of maize exhibits a high mutation rate due to the transposition of the Mu family of transposable elements. All characterized Mu elements contain similar approximately 200-bp terminal inverted repeats, yet the internal sequences of the elements may be completely unrelated. Non-Mutator stocks of maize have a 20-100-fold lower mutation rate relative to Mutator stocks, yet they contain multiple sequences that hybridize to the Mu terminal inverted repeats. Most of these sequences do not cohybridize to internal regions of previously cloned Mu elements. We have cloned two such sequences from the maize line B37, a non-Mutator inbred line. These sequences, termed Mu4 and Mu5, have an organization characteristic of transposable elements and possess approximately 200-bp Mu terminal inverted repeats that flank internal DNA, which is unrelated to other cloned Mu elements. Mu4 and Mu5 are both flanked by 9-bp direct repeats as has been observed for other Mu elements. However, we have no direct evidence that they have recently transposed because they have not been found in known genes. Although the internal regions of Mu4 and Mu5 are not related by sequence similarity, both elements share an unusual structural feature: the terminal inverted repeats extend more than 100 bp internally from Mu-similar termini. The distribution of these elements in maize lines and related species suggests that Mu elements are an ancient component of the maize genome. Moreover, the structure of the Mu termini and the fact that Mu termini are found flanking different internal sequences leads us to speculate that Mu termini once may have been capable of transposing as independent entities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.