Abstract

1. The effect of a selective mu opioid agonist, [N-MePhe3-D-Pro4]morphiceptin (PL017), on synaptic transmission in the dentate gyrus was examined in hippocampal slices. Synaptic currents were evoked by stimulation of the outer molecular layer and recorded from granule cells using whole-cell voltage-clamp techniques. 2. Monosynaptic inhibitory postsynaptic currents (IPSCs) were evoked in the presence of D(-)-2-amino-5-phosphonovaleric acid (D-APV), and N-methyl-D-aspartate (NMDA) receptor antagonist, and 6,7-dinitroquinoxaline-2,3-dione (DNQX), a non-NMDA type of glutamate receptor antagonist. The IPSCs consisted of a gamma-aminobutyric acid (GABA)A receptor-mediated early component and a GABAB receptor-mediated late component. 3. Bath application of PL017 (0.3-3 microM) induced a dose-dependent reduction in the amplitude of both early IPSCs (21-56%) and late IPSCs (43-81%). These effects could be reversed by the opiate antagonist naloxone (1 microM) or prevented by the selective mu antagonist beta-funaltrexamine hydrochloride (10 microM). 4. NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) were revealed in the presence of DNQX and the GABAA antagonist bicuculline methiodide. PL017 (3 microM) caused a 35% reduction in the amplitude of NMDA EPSCs. NMDA receptor-mediated population EPSPs recorded extracellularly were also inhibited by 3 microM PL017 to a similar degree. 5. Non-NMDA receptor-mediated EPSCs were demonstrated in the presence of D-APV and bicuculline methiodide. The amplitude of non-NMDA EPSCs was not affected by PL017.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call