Abstract

The current study investigated the roles of various subtypes of opioid receptors expressed in the thalamic nucleus submedius (Sm) in inhibition of mirror-image allodynia induced by L5/L6 spinal nerve ligation in rats. Morphine was microinjected into the Sm, which produced a dose-dependent inhibition of mirror-image allodynia; this effect was antagonized by pretreatment with non-selective opioid receptor antagonist naloxone. Microinjections of endomorphin-1 (mu-receptor agonist), or [D-Ala(2), D-Leu(5)]-enkephalin (DADLE, delta-/mu-receptor agonist), also inhibited mirror-image allodynia, and these effects were blocked by the selective mu-receptor antagonist, beta-funaltrexamine hydrochloride. The DADLE-induced inhibition, however, was not influenced by the delta-receptor antagonist naltrindole. The kappa-receptor agonist, spiradoline mesylate salt, failed to alter the mirror-image allodynia. These results suggest that Sm opioid receptor signaling is involved in inhibition of mirror-image allodynia; this effect is mediated by mu- (but not delta- and kappa-) opioid receptors in the rat model of neuropathic pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.