Abstract

Csaszar [4] introduced \mu - semi - open sets, \mu - preopen sets, \mu - \alpha - open sets and \mu - \beta - open sets in a GTS (X, \tau). By using the \mu - \sigma - closure, \mu - \pi - closure, \mu - \alpha - closure and \mu - \beta - closure in (X, \tau), we introduce and investigate the notions \mu - k - separated sets and \mu - k - connected sets in (X, \tau).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.