Abstract

AbstractRecently, DEtection TRansformer (DETR), an end-to-end object detection pipeline, has achieved promising performance. However, it requires large-scale labeled data and suffers from domain shift, especially when no labeled data is available in the target domain. To solve this problem, we propose an end-to-end cross-domain detection Transformer based on the mean teacher framework, MTTrans, which can fully exploit unlabeled target domain data in object detection training and transfer knowledge between domains via pseudo labels. We further propose the comprehensive multi-level feature alignment to improve the pseudo labels generated by the mean teacher framework taking advantage of the cross-scale self-attention mechanism in Deformable DETR. Image and object features are aligned at the local, global, and instance levels with domain query-based feature alignment (DQFA), bi-level graph-based prototype alignment (BGPA), and token-wise image feature alignment (TIFA). On the other hand, the unlabeled target domain data pseudo-labeled and available for the object detection training by the mean teacher framework can lead to better feature extraction and alignment. Thus, the mean teacher framework and the comprehensive multi-level feature alignment can be optimized iteratively and mutually based on the architecture of Transformers. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance in three domain adaptation scenarios, especially the result of Sim10k to Cityscapes scenario is remarkably improved from 52.6 mAP to 57.9 mAP. Code will be released https://github.com/Lafite-Yu/MTTrans-OpenSource.KeywordsUnsupervised domain adaptationObject detectionMean teacher transformer

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.