Abstract

Metabolic programming is integrally linked to immune cell function. Nowhere is this clearer than in the differentiation of macrophages. Proinflammatory M1 macrophages primarily use glycolysis as a rapid energy source but also to generate antimicrobial compounds, whereas alternatively activated M2 macrophages primarily rely on oxidative phosphorylation for the longevity required for proper wound healing. mTOR signaling has been demonstrated to be a key regulator of immune cell metabolism and function. mTORC2 signaling is required for the generation of M2 macrophages, whereas the role of mTORC1 signaling, a key regulator of glycolysis, has been controversial. By using genetic deletion of mTORC1 signaling in C57BL/6 mouse macrophages, we observed enhanced M1 macrophage function in vitro and in vivo. Surprisingly, this enhancement occurred despite a significant defect in M1 macrophage glycolytic metabolism. Mechanistically, enhanced M1 function occurred because of inhibition of the class III histone deacetylases the sirtuins, resulting in enhanced histone acetylation. Our findings provide a counterpoint to the paradigm that enhanced immune cell function must occur in the presence of increased cellular metabolism and identifies a potential, pharmacologic target for the regulation of inflammatory responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.