Abstract
ObjectiveCrinophagy is a secretory granule-specific autophagic process that regulates hormone content and secretion in endocrine cells. However, despite being one of the earliest described autophagic processes, its mechanism of action and regulation in mammalian cells remains unclear. Methods and resultsHere, we examined mammalian crinophagy and its modulation that regulate hormone secretion in a glucagon-producing mouse pancreatic α-cell line, alpha TC1 clone 9 (αTC9), and in vivo. Western blot, electron microscopy, and immunofluorescence analyses were performed to study crinophagy and glucagon secretion in αTC9 cells and C57BL/6 mice, in response to the mammalian target of rapamycin complex 1 (MTORC1) inhibitor rapamycin. Amino acid depletion and pharmacological inhibition of MTORC1 increased the shuttling of glucagon-containing secretory granules into lysosomes for crinophagic degradation to reduce glucagon secretion through a macroautophagy-independent mechanism. Furthermore, MTORC1 inhibition reduced both intracellular and secreted glucagon in rapamycin-treated mice, in response to hypoglycaemia. ConclusionIn summary, we have identified a novel crinophagic mechanism of intracellular glucagon turnover in pancreatic α-cells regulated by MTORC1 signalling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.