Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by eczema and itching. Recently, mTORC, a central regulator of cellular metabolism, has been reported to play a critical role in immune responses, and manipulation of mTORC pathways has emerged as an effective immunomodulatory drug. In this study, we assessed whether mTORC signaling could contribute to the development of AD in mice. AD-like skin inflammation was induced by a 7-day treatment of MC903 (calcipotriol), and ribosomal protein S6 was highly phosphorylated in inflamed tissues. MC903-induced skin inflammation was ameliorated significantly in Raptor-deficient mice and exacerbated in Pten-deficient mice. Eosinophil recruitment and IL-4 production were also decreased in Raptor deficient mice. In contrast to the pro-inflammatory roles of mTORC1 in immune cells, we observed an anti-inflammatory effect on keratinocytes. TSLP was upregulated in Raptor deficient mice or by rapamycin treatment, which was mediated by hypoxia-inducible factor (HIF) signaling. Taken together, these results from our study indicate the dual roles of mTORC1 in the development of AD, and further studies on the role of HIF in AD are warranted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.