Abstract

SummaryIdiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal disease associated with aging. However, the molecular mechanisms of the aging process that contribute to the pathogenesis of IPF have not been elucidated. IPF is characterized by abundant foci of highly active fibroblasts and myofibroblasts resistant to apoptosis. Remarkably, the role of aging in the autophagy activity of lung fibroblasts and its relationship with apoptosis, as adaptive responses, has not been evaluated previously in this disease. In the present study, we analyzed the dynamics of autophagy in primary lung fibroblasts from IPF compared to young and age‐matched normal lung fibroblasts. Our results showed that aging contributes for a lower induction of autophagy on basal conditions and under starvation which is mediated by mTOR pathway activation. Treatment with rapamycin and PP242, that target the PI3K/AKT/mTOR signaling pathway, modified starvation‐induced autophagy and apoptosis in IPF fibroblasts. Interestingly, we found a persistent activation of this pathway under starvation that contributes to the apoptosis resistance in IPF fibroblasts. These findings indicate that aging affects adaptive responses to stress decreasing autophagy through activation of mTORC1 in lung fibroblasts. The activation of this pathway also contributes to the resistance to cell death in IPF lung fibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.