Abstract
Acidity, generated in hypoxia or hypermetabolic states, perturbs homeostasis and is a feature of solid tumors. That acid peripherally disperses lysosomes is a three-decade-old observation, yet one little understood or appreciated. However, recent work has recognized the inhibitory impact this spatial redistribution has on mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of metabolism. This finding argues for a paradigm shift in localization of mTORC1 activator Ras homolog enriched in brain (RHEB), a conclusion several others have now independently reached. Thus, mTORC1, known to sense amino acids, mitogens, and energy to restrict biosynthesis to times of adequate resources, also senses pH and, via dampened mTOR-governed synthesis of clock proteins, regulates the circadian clock to achieve concerted responses to metabolic stress. While this may allow cancer to endure metabolic deprivation, immune cell mTOR signaling likewise exhibits pH sensitivity, suggesting that suppression of antitumor immune function by solid tumor acidity may additionally fuel cancers, an obstacle potentially reversible through therapeutic pH manipulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: BioEssays : news and reviews in molecular, cellular and developmental biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.