Abstract

mTor plays a central role in controlling protein homeostasis and cell survival. Recently, we have demonstrated that perturbations of mTor signaling are implicated in Alzheimer's disease (AD) and that mTor complex 1 (mTorC1) is involved in the formation of toxic phospho-tau. Therefore, we employed mass-spectrometry-based proteomics to identify specific protein expression changes in relation with cell survival in human neuroblastoma SH-SY5Y cells expressing genetically modified mTor. Cell death in SH-SY5Y cells was induced by moderate serum deprivation. Using flow cytometry we observed that up-regulated mTor complex 2 (mTorC2) increases the number of viable cells. By using a combination approach of proteomic and enrichment analysis we have identified several proteins (Thioredoxin-dependent peroxide reductase, Peroxiredoxin-5, Cofilin 1 (non-muscle), Annexin A5, Mortalin, and 14-3-3 protein zeta/delta) involved in mitochondrial integrity, apoptotosis, and pro-survival functions (caspase inhibitor activity and anti-apoptosis) that were significantly altered by mTor activity modulation. The major findings of this study are the implication of mTorC2 but not mTorC1 in cell viability modulation by activating the pro-survival machinery. Taken together, these results suggest that up-regulated mTorC2 might be playing an important role in promoting cell survival by suppressing the mitochondria-caspase-apoptotic pathway in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.