Abstract

Neuroinflammation plays a critical role during sepsis triggered by microglial activation. Mammalian target of rapamycin (mTOR) has gained attraction in neuroinflammation, however, the mechanism remains unclear. Our goal was to assess the effects of mTOR inhibition by rapamycin on inflammation, microglial activation, oxidative stress, and apoptosis associated with the changes in the inhibitor-κB (IκB)-α/nuclear factor-κB (NF-κB)/hypoxia-inducible factor-1α (HIF-1α) pathway activity following a systemic challenge with lipopolysaccharide (LPS). Rats received saline (10 mL/kg), LPS (10mg/kg), and (or) rapamycin (1mg/kg) intraperitoneally. Inhibition of mTOR by rapamycin blocked phosphorylated form of ribosomal protein S6, NF-κB p65 activity by increasing degradation of IκB-α in parallel with HIF-1α expression increased by LPS in the kidney, heart, lung, and brain tissues. Rapamycin attenuated the increment in the expression of tumor necrosis factor-α and interleukin-1β, the inducible nitric oxide synthase, gp91phox, and p47phox in addition to nitrite levels elicited by LPS in tissues or sera. Concomitantly, rapamycin treatment reduced microglial activation, brain expression of caspase-3, and Bcl-2-associated X protein while it increased expression of B cell lymphoma 2 induced by LPS. Overall, this study supports the hypothesis that mTOR contributes to the detrimental effect of LPS-induced systemic inflammatory response associated with neuroinflammation via IκB-α/NF-κB/HIF-1α signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.