Abstract
Autophagy dysfunction contributes to CD4 + T cell apoptosis during sepsis leading to impairment of adaptive immunity. However, the underlying mechanism is unclear. The mammalian target of rapamycin (mTOR) pathway modulates CD4 + T cell survival during sepsis through mechanisms that are not fully understood. We developed a mouse model of sepsis through cecal ligation and puncture (CLP) to investigate dynamic changes in autophagy in CD4 + T cells. We used T cell specific-mTOR/tuberous sclerosis complex 1 (TSC1)-knockout mice to explore the roles of the mTOR pathway in modulating autophagy during sepsis. We observed reduced fusion of autophagosomes with lysosomes in the CD4 + T cells of CLP mice, which may represent a characteristic feature of autophagy dysfunction. Deletion of mTOR relieved autophagosome-lysosome fusion dysfunction and ameliorated apoptosis of CD4 + T cells in CLP mice, but this rescued phenotype was abolished by treatment with bafilomycin A1, a specific A-L fusion inhibitor. We further explored the underlying molecular mechanism and found that phosphorylation levels of transcription factor EB were significant higher in CLP mice and that expression of A-L fusion protein SNAREs were restricted, both of which were ameliorated by mTOR deletion. Taken together, these results suggest that the mTOR pathway plays a critical role in regulation of CD4 + T-cell apoptosis during sepsis, partly through regulation of A-L fusion-related protein transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.