Abstract
With the application of heterogeneous integration and advanced packaging technologies, the use of through-silicon vias (TSVs) to deliver the power supply has become popular in the design of stacked chips in three-dimensional integrated circuits. High-density vertical interconnections offer higher speed and bandwidth, but the electromagnetic coupling effect among TSVs becomes more serious. Therefore, investigation of the noise coupling among TSVs and analysis of its impact on the power supply become important considerations. An analytical model based on the theory of multiconductor transmission lines (MTLs) is presented herein to discuss such TSV noise coupling. The method can accurately and quickly estimate the noise coupling coefficient among a large number of TSVs and offers good practicability for similar structures and even the TSVs of complex structures. Further, the influence of TSV noise coupling and simultaneous switching noise from switching circuits on the supplied power voltage is discussed. Finally, the parameters of an actual Intel chip are taken as an example to analyze the supplied power voltage that reaches complementary metal–oxide–semiconductor (CMOS) circuits through the three-dimensional (3D) power distribution network after considering the power supply noise. The presented model is validated by comparing the calculation results with those obtained from a full-wave simulator. The runtime and memory consumption requirements are lower than those of the full-wave simulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.