Abstract

Folate depletion causes chromosomal instability by increasing DNA strand breakage, uracil misincorporation, and defective repair. Folate mediated one-carbon metabolism has been suggested to play a key role in the carcinogenesis and progression of hepatocellular carcinoma (HCC) through influencing DNA integrity. Methylenetetrahydrofolate reductase (MTHFR) is the enzyme catalyzing the irreversible conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate that can control folate cofactor distributions and modulate the partitioning of intracellular one-carbon moieties. The association between MTHFR polymorphisms and HCC risk is inconsistent and remains controversial in populational studies. We aimed to establish an in vitro cell model of liver origin to elucidate the interactions between MTHFR function, folate status, and chromosome stability. In the present study, we (1) examined MTHFR expression in HCC patients; (2) established cell models of liver origin with stabilized inhibition of MTHFR using small hairpin RNA delivered by a lentiviral vector, and (3) investigated the impacts of reduced MTHFR and folate status on cell cycle, methyl group homeostasis, nucleotide biosynthesis, and DNA stability, all of which are pathways involved in DNA integrity and repair and are critical in human tumorigenesis. By analyzing the TCGA/GTEx datasets available within GEPIA2, we discovered that HCC cancer patients with higher MTHFR had a worse survival rate. The shRNA of MTHFR (shMTHFR) resulted in decreased MTHFR gene expression, MTHFR protein, and enzymatic activity in human hepatoma cell HepG2. shMTHFR tended to decrease intracellular S-adenosylmethionine (SAM) contents but folate depletion similarly decreased SAM in wildtype (WT), negative control (Neg), and shMTHFR cells, indicating that in cells of liver origin, shMTHFR does not exacerbate the methyl group supply in folate depletion. shMTHFR caused cell accumulations in the G2/M, and cell population in the G2/M was inversely correlated with MTHFR gene level (r = −0.81, p < 0.0001), MTHFR protein expression (r = −0.8; p = 0.01), and MTHFR enzyme activity (r = −0.842; p = 0.005). Folate depletion resulted in G2/M cell cycle arrest in WT and Neg but not in shMTHFR cells, indicating that shMTHFR does not exacerbate folate depletion-induced G2/M cell cycle arrest. In addition, shMTHFR promoted the expression and translocation of nuclei thymidine synthetic enzyme complex SHMT1/DHFR/TYMS and assisted folate-dependent de novo nucleotide biosynthesis under folate restriction. Finally, shMTHFR promoted nuclear MLH1/p53 expression under folate deficiency and further reduced micronuclei formation and DNA uracil misincorporation under folate deficiency. In conclusion, shMTHFR in HepG2 induces cell cycle arrest in G2/M that may promote nucleotide supply and assist cell defense against folate depletion-induced chromosome segregation and uracil misincorporation in the DNA. This study provided insight into the significant impact of MTHFR function on chromosome stability of hepatic tissues. Data from the present study may shed light on the potential regulatory mechanism by which MTHFR modulates the risk for hepatic malignancies.

Highlights

  • The genotoxic consequences of folate insufficiency [1], either through reduced folate consumption or functional folate deficiency due to genetic defects in folate-related genes, contribute to numerous pathological conditions in humans, including cancer [2,3]

  • We suggest that the advantage of de novo purine synthesis found in the Methylenetetrahydrofolate reductase (MTHFR) TT genotype may account for the protective effect of MTHFR in hematological malignancies

  • We aimed to compare the MTHFR mRNA expression in hepatocellular carcinoma (HCC) patients and explored whether it is associated with HCC prognosis

Read more

Summary

Introduction

The genotoxic consequences of folate insufficiency [1], either through reduced folate consumption or functional folate deficiency due to genetic defects in folate-related genes, contribute to numerous pathological conditions in humans, including cancer [2,3]. Deoxynucleoside triphosphates (dNTPs) are essential for the replication and maintenance of genomic stability. Regulation of cellular thymidylate synthesis is essential for DNA replication and genome stability in the nucleus [6]. Impaired de novo thymidylate synthesis due to folate deficiency results in deoxyuridine/uracil misincorporation into. DNA and causes genome instability [7,8]. Folate depletion causes chromosomal instability by increasing DNA strand breakage, uracil misincorporation, and defective repair. Human lymphocytes cultured in folate-deficient media exhibit DNA double strand breaks [9], reduced DNA repair [9], and micronuclei formation [10,11,12]. High dietary folate consumption is associated with a lower micronucleus frequency in humans [13]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call