Abstract

BackgroundThis study aimed to investigate if the homocysteine-lowering efficacy of two commonly used physiological doses (0.4 mg/d and 0.8 mg/d) of folic acid (FA) can be modified by individual methylenetetrahydrofolate reductase (MTHFR) C677T and/or methionine synthase (MTR) A2756G polymorphisms in hypertensive Chinese adults.MethodsA total of 480 subjects with mild or moderate essential hypertension were randomly assigned to three treatment groups: 1) enalapril only (10 mg, control group); 2) enalapril-FA tablet [10:0.4 mg (10 mg enalapril combined with 0.4 mg of FA), low FA group]; and 3) enalapril-FA tablet (10:0.8 mg, high FA group), once daily for 8 weeks.ResultsAfter 4 or 8 weeks of treatment, homocysteine concentrations were reduced across all genotypes and FA dosage groups, except in subjects with MTR 2756AG /GG genotype in the low FA group at week 4. However, compared to subjects with MTHFR 677CC genotype, homocysteine concentrations remained higher in subjects with CT or TT genotype in the low FA group (P < 0.05 for either of these genotypes) and TT genotype in the high FA group (P < 0.05). Furthermore, subjects with TT genotype showed a greater homocysteine-lowering response than did subjects with CC genotype in the high FA group (mean percent reduction of homocysteine at week 8: CC 10.8% vs. TT: 22.0%, P = 0.005), but not in the low FA group (CC 9.9% vs. TT 11.2%, P = 0.989).ConclusionsThis study demonstrated that MTHFR C677T polymorphism can not only affect homocysteine concentration at baseline and post-FA treatment, but also can modify therapeutic responses to various dosages of FA supplementation.

Highlights

  • This study aimed to investigate if the homocysteine-lowering efficacy of two commonly used physiological doses (0.4 mg/d and 0.8 mg/d) of folic acid (FA) can be modified by individual methylenetetrahydrofolate reductase (MTHFR) C677T and/or methionine synthase (MTR) A2756G polymorphisms in hypertensive Chinese adults

  • This study demonstrated that MTHFR C677T polymorphism can affect homocysteine concentration at baseline and post-FA treatment, and can modify therapeutic responses to various dosages of FA supplementation

  • A total of 480 patients were recruited for this study. This analysis excluded 35 subjects who were ineligible to participate in the trial (7 in control group: 9 in low FA group; 8 in high FA group) or without data of MTHFR genotype (2 in high FA group) or MTR A2756G (1 in control group; 4 in low FA group; 4 in high FA group)

Read more

Summary

Introduction

This study aimed to investigate if the homocysteine-lowering efficacy of two commonly used physiological doses (0.4 mg/d and 0.8 mg/d) of folic acid (FA) can be modified by individual methylenetetrahydrofolate reductase (MTHFR) C677T and/or methionine synthase (MTR) A2756G polymorphisms in hypertensive Chinese adults. The interactive effect between hypertension and (RR: 0.85; 95CI: 0.76-0.96, P = 0.009), in trials with no or partial FA fortification (RR: 0.80; 95% CI: 0.650.99; p = 0.04) [5] These findings underscore the importance of effectively lowering homocysteine concentration in the prevention of CVD, in populations with a high prevalence of hypertension and hyperhomocystienemia but without FA fortification. Polymorphism of MTHFR C677T leads to a reduction in enzyme activity, which may lead to an increased concentration of plasma homocysteine and lower levels of serum folate, in those with low folate intake [6]. A common polymorphism in the MTR gene (A2756G) seems to influence plasma homocysteine [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call