Abstract

BackgroundF1F0-ATP synthase (F1F0-ATPase) plays important roles in regulating mitochondrial function during hypoxia, but the effect of F1F0-ATPase defect on hypoxia/reoxygenation (H/RO) is unknown. The aim of this study was to investigate how mtDNA T8993G mutation (NARP)-induced inhibition of F1F0-ATPase modulates the H/RO–induced mitochondrial dysfunction. In addition, the potential for melatonin, a potent antioxidant with multiple mitochondrial protective properties, to protect NARP cells exposed to H/RO was assessed.Methods And FindingsNARP cybrids harboring 98% of mtDNA T8993G genes were established as an in vitro model for cells with F1F0-ATPase defect; their parental osteosarcoma 143B cells were studied for comparison. Treating the cells with H/RO using a hypoxic chamber resembles ischemia/reperfusion in vivo. NARP significantly enhanced apoptotic death upon H/RO detected by MTT assay and the trypan blue exclusion test of cell viability. Based on fluorescence probe-coupled laser scanning imaging microscopy, NARP significantly enhanced mitochondrial reactive oxygen species (mROS) formation and mitochondrial Ca2+ (mCa2+) accumulation in response to H/RO, which augmented the depletion of cardiolipin, resulting in the retardation of mitochondrial movement. With stronger H/RO stress (either with longer reoxygenation duration, longer hypoxia duration, or administrating secondary oxidative stress following H/RO), NARP augmented H/RO-induced mROS formation to significantly depolarize mitochondrial membrane potential (ΔΨm), and enhance mCa2+ accumulation and nitric oxide formation. Also, NARP augmented H/RO-induced mROS oxidized and depleted cardiolipin, thereby promoting permanent mitochondrial permeability transition, retarded mitochondrial movement, and enhanced apoptosis. Melatonin markedly reduced NARP-augmented H/RO-induced mROS formation and therefore significantly reduced mROS-mediated depolarization of ΔΨm and accumulation of mCa2+, stabilized cardiolipin, and then improved mitochondrial movement and cell survival. ConclusionNARP-induced inhibition of F1F0-ATPase enhances mROS formation upon H/RO, which augments the depletion of cardiolipin and retardation of mitochondrial movement. Melatonin may have the potential to rescue patients with ischemia/reperfusion insults, even those associated with NARP symptoms.

Highlights

  • Tissue ischemia, such as acute cerebral or myocardial infarction, is characterized by severe hypoxia, acidosis, energy depletion, and cell death

  • We found that H/RO insults led to apoptotic death in both NARP cybrids and 143B cells

  • Melatonin suppressed mCa2+ accumulation in response to H2O2-augmented H/RO insults in NARP cybrids (P

Read more

Summary

Introduction

Tissue ischemia, such as acute cerebral or myocardial infarction, is characterized by severe hypoxia, acidosis, energy depletion, and cell death. Based on fluorescence probe-coupled laser scanning imaging microscopy, NARP significantly enhanced mitochondrial reactive oxygen species (mROS) formation and mitochondrial Ca2+ (mCa2+) accumulation in response to H/RO, which augmented the depletion of cardiolipin, resulting in the retardation of mitochondrial movement. With stronger H/RO stress (either with longer reoxygenation duration, longer hypoxia duration, or administrating secondary oxidative stress following H/RO), NARP augmented H/RO-induced mROS formation to significantly depolarize mitochondrial membrane potential (ΔΨm), and enhance mCa2+ accumulation and nitric oxide formation. Melatonin markedly reduced NARP-augmented H/RO-induced mROS formation and significantly reduced mROS-mediated depolarization of ΔΨm and accumulation of mCa2+, stabilized cardiolipin, and improved mitochondrial movement and cell survival. Conclusion: NARP-induced inhibition of F1F0-ATPase enhances mROS formation upon H/RO, which augments the depletion of cardiolipin and retardation of mitochondrial movement. Melatonin may have the potential to rescue patients with ischemia/reperfusion insults, even those associated with NARP symptoms

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.