Abstract

Glioma is one of the most threatening tumors and the survival rate of the infected patient is low. The automatic segmentation of the tumors by reliable algorithms can reduce diagnosis time. In this paper, a novel 3D multi-threading dilated convolutional network (MTDC-Net) is proposed for the automatic brain tumor segmentation. First of all, a multi-threading dilated convolution (MTDC) strategy is introduced in the encoder part, so that the low dimensional structural features can be extracted and integrated better. At the same time, the pyramid matrix fusion (PMF) algorithm is used to integrate the characteristic structural information better. Secondly, in order to make the better use of context semantical information, this paper proposed a spatial pyramid convolution (SPC) operation. By using convolution with different kernel sizes, the model can aggregate more semantic information. Finally, the multi-threading adaptive pooling up-sampling (MTAU) strategy is used to increase the weight of semantic information, and improve the recognition ability of the model. And a pixel-based post-processing method is used to prevent the effects of error prediction. On the brain tumors segmentation challenge 2018 (BraTS2018) public validation dataset, the dice scores of MTDC-Net are 0.832, 0.892 and 0.809 for core, whole and enhanced of the tumor, respectively. On the BraTS2020 public validation dataset, the dice scores of MTDC-Net are 0.833, 0.896 and 0.797 for the core tumor, whole tumor and enhancing tumor, respectively. Mass numerical experiments show that MTDC-Net is a state-of-the-art network for automatic brain tumor segmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call