Abstract

We present MTCP, a congestion control scheme for large-scale reliable multicast. Congestion control for reliable multicast is important, because of its wide applications in multimedia and collaborative computing, yet non-trivial, because of the potentially large number of receivers involved. Many schemes have been proposed to handle the recovery of lost packets in a scalable manner, but there is little work on the design and implementation of congestion control schemes for reliable multicast. We propose new techniques that can effectively handle instances of congestion occurring simultaneously at various parts of a multicast tree. Our protocol incorporates several novel features: (1) hierarchical congestion status reports that distribute the load of processing feedback from all receivers across the multicast group, (2) the relative time delay concept which overcomes the difficulty of estimating round-trip times in tree-based multicast environments, (3) window-based control that prevents the sender from transmitting faster than packets leave the bottleneck link on the multicast path through which the sender's traffic flows, (4) a retransmission window that regulates the flow of repair packets to prevent local recovery from causing congestion, and (5) a selective acknowledgment scheme that prevents independent (i.e., non-congestion-related) packet loss from reducing the sender's transmission rate. We have implemented MTCP both on UDP in SunOS 5.6 and on the simulator ns, and we have conducted extensive Internet experiments and simulation to test the scalability and inter-fairness properties of the protocol. The encouraging results we have obtained support our confidence that TCP-like congestion control for large-scale reliable multicast is within our grasp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.