Abstract

The continuing increase in the incidence and recognition of children's sleep disorders has heightened the demand for automatic pediatric sleep staging. Supervised sleep stage recognition algorithms, however, are often faced with challenges such as limited availability of pediatric sleep physicians and data heterogeneity. Drawing upon two quickly advancing fields, i.e., semi-supervised learning and self-supervised contrastive learning, we propose a multi-task contrastive learning strategy for semi-supervised pediatric sleep stage recognition, abbreviated as MtCLSS. Specifically, signal-adapted transformations are applied to electroencephalogram (EEG) recordings of the full night polysomnogram, which facilitates the network to improve its representation ability through identifying the transformations. We also introduce an extension of contrastive loss function, thus adapting contrastive learning to the semi-supervised setting. In this way, the proposed framework learns not only task-specific features from a small amount of supervised data, but also extracts general features from signal transformations, improving the model robustness. MtCLSS is evaluated on a real-world pediatric sleep dataset with promising performance (0.80 accuracy, 0.78 F1-score and 0.74 kappa). We also examine its generality on a well-known public dataset. The experimental results demonstrate the effectiveness of the MtCLSS framework for EEG based automatic pediatric sleep staging in very limited labeled data scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.