Abstract

In this paper, a new 2D shape Multiscale Triangle-Area Representation (MTAR) method is proposed. This representation utilizes a simple geometric principle, that is, the area of the triangles formed by the shape boundary points. The wavelet transform is used for smoothing and decomposing the shape boundaries into multiscale levels. At each scale level, a TAR image and the corresponding Maxima-Minima lines are obtained. The resulting MTAR is more robust to noise, less complex, and more selective than similar methods such as the curvature scale-space (CSS). Furthermore, the MTAR is invariant to the general affine transformations. The proposed MTAR is tested and compared to the CSS method using MPEG-7 CE-shape-1 part B and Columbia Object Image Library (COIL-20) datasets. The results show that the proposed MTAR outperforms the CSS method for the conducted tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.