Abstract

MUC1, a transmembrane mucin, plays a critical role in embryo implantation, protection of mucosal epithelia from microbial and enzymic attack and various aspects of tumour progression. In some species, a decrease in uterine epithelial MUC1 protein and mRNA expression accompanies embryo implantation. In other species, such as rabbits and humans, MUC1 appears to be locally removed at blastocyst attachment sites, suggesting the action of a protease. We previously demonstrated that MUC1 is proteolytically released from the surface of a human uterine epithelial cell line, HES, and identified TACE/ADAM17 (where TACE stands for tumour necrosis factor-alpha converting enzyme and ADAM for A Disintegrin And Metalloprotease-like) as a constitutive and PMA-stimulated MUC1 sheddase [Thathiah, Blobel and Carson (2003) J. Biol. Chem. 274, 3386-3394]. Further characterization of the proteolytic activity(ies) mediating MUC1 release indicates that MUC1 shedding is also accelerated by the tyrosine phosphatase inhibitor pervanadate. Pervanadate, but not PMA, stimulates MUC1 shedding in TACE-deficient cells, indicating activation of a metalloproteolytic activity(ies) distinct from TACE. Pervanadate-stimulated MUC1 release is inhibited by the TIMP-2 (tissue inhibitor of metalloprotease-2) and TIMP-3, but is unaffected by TIMP-1, consistent with the MT-MMPs (membrane-type matrix metalloproteases). Pervanadate stimulation of MUC1 shedding is absent from MUC1-transfected MT1-MMP-deficient fibroblasts, but is restored after MUC1 and MT1-MMP co-transfection. Furthermore, overexpression of MT1-MMP in HES cells enhances pervanadate-stimulated MUC1 release, and MT1-MMP co-localizes with MUC1 in vivo at the apical surface of receptive-phase human uterine epithelia. Taken together, these studies characterize a MUC1 sheddase activity in addition to TACE and identify MT1-MMP as a pervanadate-stimulated MUC1 sheddase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.