Abstract

Multilevel thresholding image segmentation is one of the most widely used segmentation methods in the field of image segmentation. This paper proposes a multilevel thresholding image segmentation technique based on an improved whale optimization algorithm. The WOA has been applied to many complex optimization problems because of its excellent performance; however, it easily falls into local optimization. Therefore, firstly, a mixed-strategy-based improved whale optimization algorithm (MSWOA) is proposed using the k-point initialization algorithm, the nonlinear convergence factor, and the adaptive weight coefficient to improve the optimization ability of the algorithm. Then, the MSWOA is combined with the Otsu method and Kapur entropy to search for the optimal thresholds for multilevel thresholding gray image segmentation, respectively. The results of algorithm performance evaluation experiments on benchmark functions demonstrate that the MSWOA has higher search accuracy and faster convergence speed than other comparative algorithms and that it can effectively jump out of the local optimum. In addition, the image segmentation experimental results on benchmark images show that the MSWOA–Kapur image segmentation technique can effectively and accurately search multilevel thresholds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call