Abstract

Recently, microreactors, which are tubular reactors capable of fast and highly efficient chemical reactions, have attracted attention. However, precise temperature control is required because temperature changes due to reaction heat can cause reactions to proceed differently from those designed. In a previous study, a single-input/output nonlinear control system was proposed using a model in which the microreactor is divided into three regions and the thermal equation is formulated considering the temperature gradient, but it could not control two different temperatures. In this paper, a multi-input, multi-output nonlinear control system was designed using operator theory. On the other hand, when the number of parallel microreactors is increased, a sensorless control method using M–SVR with a generalized Gaussian kernel was incorporated into the MIMO nonlinear control system from the viewpoint of cost reduction, and the effectiveness of the proposed method was confirmed via experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call