Abstract
The antiferromagnetic sublattice magnetizations below the Morin transition temperature TM≈260°K, are parallel and antiparallel to the trigonal axis of rhombohedral α-Fe2O3. Experiments at 80°K, using the Mössbauer technique together with high external magnetic fields on both polycrystalline and single-crystal samples, show that the directions of the sublattice magnetizations flop from along the trigonal axis for the applied field H0<Hc to perpendicular to the trigonal axis for H0>Hc; Hc is found to be 67.5±3 kOe. In the polycrystalline sample this behavior is exhibited through the occurrence of a maximum in the width of the outer lines of the Mössbauer spectrum plotted as a function of H0. In the single crystal, which is oriented so that the gamma rays propagate along the [111] direction, the magnetic transition is clearly observed as a sudden qualitative as well as quantitative change in the appearance of the Mössbauer hyperfine spectrum; below the critical field the Δm=0 lines are the strongest components of the six-line spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.