Abstract

Studies of the ferrite nanoparticles prepared by the chemical decomposition of iron chlorides with a various ratio ξ = Fe3+/Fe2+ are herein presented. The microstructure and the magnetic properties have been studied by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). The TEM studies show that the nanoparticles have almost a spherical shape with the diameter of (12 ± 2) nm for all samples. The measured XRD pattern was mainly composed of lines which were indexed with a cubic spinel structure. The analysis of the Mössbauer data shows that the microstructure of the nanoparticles consists of the core formed by nonstoichiometric magnetite and maghemite shell. A small amount of hematite, probably on the surface of the nanoparticles with ξ = 1.75, 2.0, was detected. At temperatures T ≤ 150 K the spin canting of surface maghemite with ξ = 2.25 was observed while for the samples with ξ = 1.75, 2.0 such effect was suppressed by the presence of hematite on the surface of the nanoparticles. Infield Mössbauer spectra with ξ = 1.75, 2.0 show that magnetic moments of the magnetite/maghemite core are parallel while magnetic moments of the surface hematite are perpendicular to the direction of the external magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.