Abstract

The effect of the Mg-content on the cation distribution of cubic MgxCu0.5−xZn0.5Fe2O4(x = 0.0, 0.2, 0.3, 0.5) prepared by conventional ceramic method was investigated using Mössbauer spectroscopy at room temperature. We aimed to estimate the enhanced changes in the inversion parameter of MgxCu0.5−xZn0.5Fe2O4 system due to γ-ray irradiation as a function of the Mg-content in the range 0.5 ≥ x ≥ 0.0. The samples were irradiated by 1173 keV + 1332.5 keV γ-rays emitted from 60Co radioactive source. The total absorbed dose was 1.9 MGy with dose rate 5 kGy/h. The observed superposition of more than one sextet that belong to either octahedral [B] or tetrahedral (A) sites in the Mössbauer spectra before and after γ-irradiation was interpreted by the effect of spin canting. Moreover, there is an evidence on the presence of the Fe2+ charge state at A-sites in the irradiated samples. The quadrupole splittings showed that the orientation of the magnetic hyperfine field with respect to the principle axes of the electric field gradient was random. The magnetic hyperfine field values indicated also that the A sites had more A-O-B super exchange interactions than the B sites. New antistructure modeling for the pristine and irradiated MgxCu0.5−xZn0.5Fe2O4 samples at different γ-doses was used for describing of the lattice defects and surface centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call