Abstract

Mossbauer effect measurements were performed with sources of133Xe implanted at 7 K in polycrystalline iron foils by means of an isotope separator. Information about the direct environment of an implanted radioactive probe atom is obtained through the hyperfine interaction of the daughter nucleus (133Cs) with its surroundings. The Mossbauer spectra were analyzed on the basis of an earlier model, assuming three visible spectral components with high, intermediate and low hyperfine fields and recoilless fractions, respectively, and a fourth, invisible component with a recoilless fraction very close to zero. Annealing experiments showed no evidence for post-implantation recovery stage I in the iron foils, while recovery stage II only gave rise to small changes in the site occupations. These results can be explained in terms of the high energy density locally deposited in the lattice by each implanted atom, leading to stage I recovery during the very short time that is necessary for the thermal dissipation of this energy. Quantitatively, these results are confirmed by calculations of Sigmund on heavy-ion induced elastic-collision spikes in solids. After annealing at room temperature the site occupations agree with those obtained directly with room temperature implanted sources. In previous experiments we have shown that different results are obtained for annealing and for implantation at 200°C. From these results we estinate the migration energy of vacancies in iron at 1.27±0.09 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.