Abstract

Diketiminate-supported iron complexes are capable of cleaving the strong triple bond of N2 to give a tetra-iron complex with two nitrides (Rodriguez et al., Science, 2011, 334, 780-783). The mechanism of this reaction has been difficult to determine, but a transient green species was observed during the reaction that corresponds to a potential intermediate. Here, we describe studies aiming to identify the characteristics of this intermediate, using a range of spectroscopic techniques, including Mössbauer spectroscopy, electronic absorption spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and nuclear resonance vibrational spectroscopy (NRVS) complemented by density functional theory (DFT) calculations. We successfully elucidated the nature of the starting iron(II) species and the bis(nitride) species in THF solution, and in each case, THF breaks up the multiiron species. Various observations on the green intermediate species indicate that it has one N2 per two Fe atoms, has THF associated with it, and has NRVS features indicative of bridging N2. Computational models with a formally diiron(0)-N2 core are most consistent with the accumulated data, and on this basis, a mechanism for N2 splitting is suggested. This work shows the power of combining NRVS, Mössbauer, NMR, and vibrational spectroscopies with computations for revealing the nature of transient iron species during N2 cleavage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call