Abstract

ABSTRACT Background Chondrocyte oxidative stress and apoptosis are critical factors contributing to the pathogenesis of osteoarthritis (OA). Methionine sulfoxide reductase B2 (MSRB2) is a mitochondrial protein that protects cells from oxidative stress and is involved in apoptosis. This study aimed to investigated the expression of MSRB2 in articular cartilage tissues and elucidated its effect on H2O2-stimulated chondrocytes. Methods Human chondrocytes were cultured in Dulbecco’s modified Eagle’s medium (DMEM)/F12. MSRB2 overexpression in chondrocytes was achieved by transfecting with an MSRB2 overexpression plasmid. Western blot, quantitative RT-PCR, Immunofluorescence staining, and TUNEL assay were employed in this study. Results MSRB2 expression was found to be reduced in OA patients. Furthermore, overexpression of MSRB2 in H2O2-induced chondrocytes mitigated apoptosis and enhanced cell viability. Elevated MSRB2 expression diminished chondrocyte ROS contents, decreased cytochrome C (Cyc) in the cytoplasm, and regulated mitochondrial membrane potential to maintain mitochondrial homeostasis. Interestingly, knockdown of charged multivesicular body protein 5 (CHMP5) led to a decreased inMSRB2 expression in chondrocytes. Additionally, protein levels of CHMP5 and MSRB2 were reduced in H2O2-stimulated chondrocytes, and silencing CHMP5 reduced MSRB2 expression. Knockdown of CHMP5 increased cleaved caspase-3 expression in H2O2-induced chondrocytes and elevated TUNEL-positive chondrocytes. Conclusion MSRB2 decreased in OA, and overexpression of MSRB2 alleviated oxidative stress and apoptosis of chondrocyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.