Abstract

The assignment of orthologous genes between a pair of genomes is a fundamental and challenging problem in comparative genomics, since many computational methods for solving various biological problems critically rely on bona fide orthologs as input. While it is usually done using sequence similarity search, we recently proposed a new combinatorial approach that combines sequence similarity and genome rearrangement. This paper continues the development of the approach and unites genome rearrangement events and (post-speciation) duplication events in a single framework under the parsimony principle. In this framework, orthologous genes are assumed to correspond to each other in the most parsimonious evolutionary scenario involving both genome rearrangement and (post-speciation) gene duplication. Besides several original algorithmic contributions, the enhanced method allows for the detection of inparalogs. Following this approach, we have implemented a high-throughput system for ortholog assignment on a genome scale, called MSOAR, and applied it to human and mouse genomes. As the result will show, MSOAR is able to find 99 more true orthologs than the INPARANOID program did. In comparison to the iterated exemplar algorithm on simulated data, MSOAR performed favorably in terms of assignment accuracy. We also validated our predicted main ortholog pairs between human and mouse using public ortholog assignment datasets, synteny information, and gene function classification. These test results indicate that our approach is very promising for genome-wide ortholog assignment. Supplemental material and MSOAR program are available at http://msoar.cs.ucr.edu.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.