Abstract
In this paper, we present an efficient multiscale low-rank representation for image segmentation. Our method begins with partitioning the input images into a set of superpixels, followed by seeking the optimal superpixel-pair affinity matrix, both of which are performed at multiple scales of the input images. Since low-level superpixel features are usually corrupted by image noise, we propose to infer the low-rank refined affinity matrix. The inference is guided by two observations on natural images. First, looking into a single image, local small-size image patterns tend to recur frequently within the same semantic region, but may not appear in semantically different regions. The internal image statistics are referred to as replication prior, and we quantitatively justified it on real image databases. Second, the affinity matrices at different scales should be consistently solved, which leads to the cross-scale consistency constraint. We formulate these two purposes with one unified formulation and develop an efficient optimization procedure. The proposed representation can be used for both unsupervised or supervised image segmentation tasks. Our experiments on public data sets demonstrate the presented method can substantially improve segmentation accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.