Abstract

This paper describes an efficient implementation of a nested decomposition algorithm for the multistage stochastic linear programming problem. Many of the computational tricks developed for deterministic staircase problems are adapted to the stochastic setting and their effect on computation times is investigated. The computer code supports an arbitrary number of time periods and various types of random structures for the input data. Numerical results compare the performance of the algorithm to MINOS 5.0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.