Abstract

Missing link prediction technology (MLP) is always a hot research area in the field of complex networks, and it has been extensively utilized in UAV swarm network reconstruction recently. UAV swarm is an artificial network with strong randomness, in the face of which prediction methods based on network similarity often perform poorly. To solve those problems, this paper proposes a Multi Kernel Learning algorithm with a multi-strategy grey wolf optimizer based on time series (MSGWO-MKL-SVM). The Multiple Kernel Learning (MKL) method is adopted in this algorithm to extract the advanced features of time series, and the Support Vector Machine (SVM) algorithm is used to determine the hyperplane of threshold value in nonlinear high dimensional space. Besides that, we propose a new measurable indicator of Multiple Kernel Learning based on cluster, transforming a Multiple Kernel Learning problem into a multi-objective optimization problem. Some adaptive neighborhood strategies are used to enhance the global searching ability of grey wolf optimizer algorithm (GWO). Comparison experiments were conducted on the standard UCI datasets and the professional UAV swarm datasets. The classification accuracy of MSGWO-MKL-SVM on UCI datasets is improved by 6.2% on average, and the link prediction accuracy of MSGWO-MKL-SVM on professional UAV swarm datasets is improved by 25.9% on average.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call