Abstract

Change detection (CD) stands out as a pivotal yet challenging task in the interpretation of remote sensing images. Significant developments have been witnessed, particularly with the rapid advancements in deep learning techniques. Nevertheless, challenges such as incomplete detection targets and unsmooth boundaries remain as most CD methods suffer from ineffective feature fusion. Therefore, this paper presents a multi-scale gated fusion network (MSGFNet) to improve the accuracy of CD results. To effectively extract bi-temporal features, the EfficientNetB4 model based on a Siamese network is employed. Subsequently, we propose a multi-scale gated fusion module (MSGFM) that comprises a multi-scale progressive fusion (MSPF) unit and a gated weight adaptive fusion (GWAF) unit, aimed at fusing bi-temporal multi-scale features to maintain boundary details and detect completely changed targets. Finally, we use the simple yet efficient UNet structure to recover the feature maps and predict results. To demonstrate the effectiveness of the MSGFNet, the LEVIR-CD, WHU-CD, and SYSU-CD datasets were utilized, and the MSGFNet achieved F1 scores of 90.86%, 92.46%, and 80.39% on the three datasets, respectively. Furthermore, the low computational costs and small model size have validated the superior performance of the MSGFNet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call