Abstract
Suckling-age rats display endogenous circadian rhythmicity of metabolic rate (MR) with energy-saving, torpor-like decreases, which are sympathetically controlled and suppressed by leptin treatment. We investigated whether neonatal monosodium glutamate (MSG) treatment, known to cause arcuate nucleus damage and adult-age obesity, alters energy balance in the first two postnatal weeks. Continuously recorded MR and core temperatures (T(c)) show that MSG treatment disinhibits the periodic, sympathetically controlled, energy-saving drops of T(c) and MR. Increased energy expenditure thus explains reduced body fat at normal lean body mass found in MSG-treated pups artificially nourished identically to controls. In MSG-treated mother-reared pups, lean body mass is additionally reduced, suggesting that MSG also reduces suckling. Plasma leptin levels are similar in controls and MSG-treated pups but higher per unit of fat mass in the latter. We conclude that the postweaning development of MSG obesity and depressed thermogenesis are preceded by an early phase of increased energy expenditure with decreased fat deposition during suckling age and hypothesize cell damage in the arcuate nucleus to be involved in both.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Endocrinology and metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.