Abstract
Within the context of video frame interpolation, complex motion modeling is the task of capturing, in a video sequence, where the moving objects are located in the interpolated frame, and how to maintain the temporal consistency of motion. Existing video frame interpolation methods typically assign either a fixed size of the motion kernel or a refined optical flow to model complex motions. However, they have the limitation of data redundancy and inaccuracy representation of motion. This paper introduces a unified warping framework, named multi-scale expandable deformable convolution (MSEConv), for simultaneously performing complex motion modeling and frame interpolation. In the proposed framework, a deep fully convolutional neural network with global attention is proposed to estimate multiple small-scale kernel weights with different expansion degrees and adaptive weight allocation for each pixel synthesis. Moreover, most of the kernel-based interpolation methods can be treated as the special case of the proposed MSEConv, thus, MSEConv can be easily transferred to other kernel-based frame interpolation methods for performance improvement. To further improve the robustness of motion occlusions, an operation of mask occlusion is introduced. As a consequence, our proposed MSEConv shows strong performance on par or even better than the state-of-the-art kernel-based frame interpolation works on public datasets. Our source code and visual comparable results are available at https://github.com/Pumpkin123709/MSEConv.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.