Abstract

Label-free peptide quantification is a promising approach for the large-scale characterization of proteome dynamics at low cost. Here, we describe a method for absolute label-free quantification using an untargeted approach for peptide fragmentation referred to as MSE. We show that spiked external standards provide sufficient accuracy for the quantification of proteins in complex samples resulting in similar protein quantification results as spectral counting. As an advantage, label-free quantification also works for small numbers of samples whereas spectral counting requires large datasets to result in a similar robustness. The sensitivity of protein identification increases significantly when ion mobility separation is included in addition to the standard LC-MS setup in the analysis workflow. Ion mobility decreases sample complexity and serves as an additional separation criterion to align a parent ion with its product ions after MSE fragmentation. As a drawback, quantification of high abundance proteins becomes inaccurate because of detector saturation. We describe here a suitable workflow to achieve good sensitivity for protein quantification and give initial guidance on data interpretation. To achieve good identification and quantification accuracy, the protein amount loaded onto the column should not exceed 400-600ng. In a dynamic range window of 3-4 orders of magnitude, robust quantification can be obtained with complex samples comprising up to 2000-3000 proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.