Abstract

Fog computing has evolved as a promising computing paradigm to support the execution of latency-sensitive Internet of Things (IoT) applications. The mobile devices connected to the fog environment are resource constrained and non-stationary. In such environments, offloading mobile user’s computational task to nearby fog servers is necessary to satisfy the QoS requirements of time-critical IoT applications. Moreover, the fog servers are also susceptible to numerous attacks which induce security and privacy issues.Offloading computation task to a malicious fog node affects the integrity of users’ data. Despite the fact that there are many integrity-preserving strategies for fog environments, the majority of them rely on a reliable central entity that might have a single point of failure. Blockchain is a promising strategy that maintains data integrity in a decentralized manner. The state-of-art blockchain offloading mechnanisms have not considered the mobility during secure offloading process. Besides, it is necessary to ensure QoS constraints of the IoT applications while considering mobility of user devices. Hence, in this paper, Blockchain assisted Mobility-aware Secure Computation Offloading (MSCO) mechanism is proposed to choose the best authorized fog servers for offloading task with minimal computational and energy cost. To address the optimization issue, a hybrid Genetic Algorithm based Particle Swarm Optimization technique is employed. Experimental results demonstrated the significant improvement of MSCO when compared to the existing approaches in terms of on average 11 % improvement of total cost which includes the parameters of latency and energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call