Abstract
Multiple Sequence Alignment (MSA) is an essential tool in protein structure modeling, gene and protein function prediction, DNA motif recognition, phylogenetic analysis, and many other bioinformatics tasks. Therefore, improving the accuracy of multiple sequence alignment is an important long-term objective in bioinformatics. We designed and developed a new method MSACompro to incorporate predicted secondary structure, relative solvent accessibility, and residue-residue contact information into the currently most accurate posterior probability-based MSA methods to improve the accuracy of multiple sequence alignments. Different from the multiple sequence alignment methods that use the tertiary structure information of some sequences, our method uses the structural information purely predicted from sequences. In this chapter, we first introduce some background and related techniques in the field of multiple sequence alignment. Then, we describe the detailed algorithm of MSACompro. Finally, we show that integrating predicted protein structural information improved the multiple sequence alignment accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.