Abstract

Protein phosphorylation is critically important for many cellular processes, including progression through the cell cycle, cellular metabolism, and differentiation. Isobaric labeling, for example, tandem mass tags (TMT), in phosphoproteomics workflows enables both relative and absolute quantitation of these phosphorylation events. Traditional TMT workflows identify peptides using fragment ions at the MS2 level and quantify reporter ions at the MS3 level. However, in addition to the TMT reporter ions, MS3 spectra also include fragment ions that can be used to identify peptides. Here we describe using MS3 spectra for both phosphopeptide identification and quantification, a process that we term MS3-IDQ. To maximize quantified phosphopeptides, we optimize several instrument parameters, including the modality of mass analyzer (i.e., ion trap or Orbitrap), MS2 automatic gain control (AGC), and MS3 normalized collision energy (NCE), to achieve the best balance of identified and quantified peptides. Our optimized MS3-IDQ method included the following parameters for the MS3 scan: NCE = 37.5 and AGC target = 1.5 × 105, and scan range = 100-2000. Data from the MS3 scan were complementary to those of the MS2 scan, and the combination of these scans can increase phosphoproteome coverage by >50%, thereby yielding a greater number of quantified and accurately localized phosphopeptides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.