Abstract

Quantitative mass spectrometry-based proteomics is highly versatile, but not easily multiplexed. Isobaric labeling strategies allow mass spectrometry-based multiplexed proteome quantification; however, ratio distortion due to protein quantification interference is a common effect. We present a multi-proteome model (mixture of human and yeast proteins) in a 6-plex isobaric labeling system to fully document the interference effect, and we report that a multistage MS3-based approach almost completely eliminates interference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.