Abstract
A reliability-based robust design optimization (RBRDO) for ship hulls is presented. A real ocean environment is considered, including stochastic sea state and speed. The optimization problem has two objectives: (a) the reduction of the expected value of the total resistance in waves and (b) the increase of the ship operability (reliability). Analysis tools include a URANS solver, uncertainty quantification methods and metamodels, developed and validated in earlier research. The design space is defined by an orthogonal four- dimensional representation of shape modifications, based on the Karhunen-Lo` eve expansion of free-form defor- mations of the original hull. The objective of the present paper is the assessment of deterministic derivative-free multi-objective optimization algorithms for the solution of the RBRDO problem, with focus on multi-objective extensions of the deterministic particle swarm optimization (DPSO) algorithm. Three evaluation metrics provide the assessment of the proximity of the solutions to a reference Pareto front and their wideness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.