Abstract

AbstractA deep convolutional neural network (CNN) achieves remarkable performance for medical image analysis. UNet is the primary source in the performance of 3D CNN architectures for medical imaging tasks, including brain tumor segmentation. The skip connection in the UNet architecture concatenates multi-scale features from image data. The multi-scaled features play an essential role in brain tumor segmentation. Researchers presented numerous multi-scale strategies that have been excellent for the segmentation task. This paper proposes a multi-scale strategy that can further improve the final segmentation accuracy. We propose three multi-scale strategies in MS UNet. Firstly, we utilize densely connected blocks in the encoder and decoder for multi-scale features. Next, the proposed residual-inception blocks extract local and global information by merging features of different kernel sizes. Lastly, we utilize the idea of deep supervision for multiple depths at the decoder. We validate the MS UNet on the BraTS 2021 validation dataset. The dice (DSC) scores of the whole tumor (WT), tumor core (TC), and enhancing tumor (ET) are \(91.938\%\), \(86.268\%\), and \(82.409\%\), respectively.KeywordsCNNUNetContextual informationDense connectionsResidual inception blocksBrain tumor segmentation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.