Abstract

In special relativity, the definition of coordinate systems adapted to generic accelerated observers is a long-standing problem, which has found unequivocal solutions only for the simplest motions. We show that the Marzke-Wheeler construction, an extension of the Einstein synchronization convention, produces accelerated systems of coordinates with desirable properties: (a) they reduce to Lorentz coordinates in a neighborhood of the observers' world-lines; (b) they index continuously and completely the causal envelope of the world-line (that is, the intersection of its causal past and its causal future: for well-behaved world-lines, the entire space-time). In particular, Marzke-Wheeler coordinates provide a smooth and consistent foliation of the causal envelope of any accelerated observer into space-like surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.