Abstract

Splicing of transcripts is catalyzed by the spliceosome, a mega-complex consisting of hundreds of proteins and five snRNAs, which employs direct interactions. When U1 snRNA forms high-affinity binding, namely more than eight base pairs, with the 5'SS, the result is usually a suppressing effect on the splicing activity. This likely occurs due to the inefficient unwinding of U1/5'SS base-pairing or other regulatory obstructions. Here, we show invitro and in patient-derived cell lines that pre-microRNAs can modulate the splicing reaction by interacting with U1 snRNA. This leads to reduced binding affinity to the 5'SS, and hence promotes the inclusion of exons containing 5'SS, despite sequence-based high affinity to U1. Application of the mechanism resulted in correction of the splicing defect in the disease-causing VCAN gene from an individual with Wagner syndrome. This pre-miRNA/U1 interaction can regulate the expression of alternatively spliced exons, thus extending the scope of mechanisms regulating splicing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.